We propose a sensitive new detector based on Cooper pair breaking in a superconductor. The quantum capacitor detector (QCD) exploits the extraordinary sensitivity of superconducting single-electron devices to the presence of quasiparticles generated by pair-breaking photons. This concept would enable single-photon detection at far-IR and sub-millimeter frequencies with detector sensitivities that exceed that of transition-edge-sensor bolometers (TES), kinetic inductance detectors (KID), and superconducting tunnel junction detectors (STJ). The detectors we propose are based on the single Cooper pair box (SCB), a mesoscopic superconducting device that has been successfully developed at JPL for applications in quantum computing. This concept allows for frequency multiplexing of a large number of pixels using a single RF line, and does not require individual bias of each pixel. The QCD is ideal for the sensitive spectrographs considered for upcoming cold space telescopes, such as BLISS for SPICA in the coming decade, and for the more ambitious instruments for the SAFIR / CALISTO and SPIRIT / SPECS missions envisioned for the 2020 decade. These missions require large detector arrays (> 10,000 elements) which are limited by astrophysical background noise, corresponding to a noise-equivalent power (NEP) as low as 2x10-20 W / Hz1/2. Given its intrinsic response time, the QCD could also be used for energy-resolved visible photon detection, with estimated energy resolution > 100, enabling imaging low-resolution spectroscopy with an array of detectors.