Superconductivity in Silicon Nanostructures


الملخص بالإنكليزية

We present the findings of the superconductivity in the silicon nanostructures prepared by short time diffusion of boron after preliminary oxidation of the n-type Si (100) surface. These Si-based nanostructures represent the p-type high mobility silicon quantum well (Si-QW) confined by the delta - barriers heavily doped with boron. The ESR studies show that the delta - barriers appear to consist of the trigonal dipole centers, B(+)-B(-), which are caused by the negative-U reconstruction of the shallow boron acceptors, 2B(0)=>B(+)-B(-). The temperature and magnetic field dependencies of the resistance, thermo-emf, specific heat and magnetic susceptibility demonstrate that the high temperature superconductivity observed seems to result from the transfer of the small hole bipolarons through these negative-U dipole centers of boron at the Si-QW - delta - barrier interfaces. The value of the superconductor energy gap obtained is in a good agreement with the data derived from the oscillations of the conductance in normal state and of the zero-resistance supercurrent in superconductor state as a function of the bias voltage. These oscillations appear to be correlated by on- and off-resonance tuning the two-dimensional subbands of holes with the Fermi energy in the superconductor delta - barriers. Finally, the proximity effect in the S- Si-QW -S structure is revealed by the findings of the multiple Andreev reflection (MAR) processes and the quantization of the supercurrent.

تحميل البحث