We study the nonrelativistic quantum Coulomb hamiltonian (i.e., inverse of distance potential) in $R^n$, n = 1, 2, 3. We characterize their self-adjoint extensions and, in the unidimensional case, present a discussion of controversies in the literature, particularly the question of the permeability of the origin. Potentials given by fundamental solutions of Laplace equation are also briefly considered.