Optimal positive-operator-valued measures for unambiguous state discrimination


الملخص بالإنكليزية

Optimization of the mean efficiency for unambiguous (or error free)discrimination among $N$ given linearly independent nonorthogonal states should be realized in a way to keep the probabilistic quantum mechanical interpretation. This imposes a condition on a certain matrix to be positive semidefinite. We reformulated this condition in such a way that the conditioned optimization problem for the mean efficiency was reduced to finding an unconditioned maximum of a function defined on a unit $N$-sphere for equiprobable states and on an $N$-ellipsoid if the states are given with different probabilities. We established that for equiprobable states a point on the sphere with equal values of Cartesian coordinates, which we call symmetric point, plays a special role. Sufficient conditions for a vector set are formulated for which the mean efficiency for equiprobable states takes its maximal value at the symmetric point. This set, in particular, includes previously studied symmetric states. A subset of symmetric states, for which the optimal measurement corresponds to a POVM requiring a one-dimensional ancilla space is constructed. We presented our constructions of a POVM suitable for the ancilla space dimension varying from 1 till $N$ and the Neumarks extension differing from the existing schemes by the property that it is straightforwardly applicable to the case when it is desirable to present the whole space system + ancilla as the tensor product of a two-dimensional ancilla space and the $N$-dimensional system space.

تحميل البحث