Bayesian outlier detection in Capital Asset Pricing Model


الملخص بالإنكليزية

We propose a novel Bayesian optimisation procedure for outlier detection in the Capital Asset Pricing Model. We use a parametric product partition model to robustly estimate the systematic risk of an asset. We assume that the returns follow independent normal distributions and we impose a partition structure on the parameters of interest. The partition structure imposed on the parameters induces a corresponding clustering of the returns. We identify via an optimisation procedure the partition that best separates standard observations from the atypical ones. The methodology is illustrated with reference to a real data set, for which we also provide a microeconomic interpretation of the detected outliers.

تحميل البحث