Eigenfunction concentration for polygonal billiards


الملخص بالإنكليزية

In this note, we extend the results on eigenfunction concentration in billiards as proved by the third author in cite{M1}. There, the methods developed in Burq-Zworski cite{BZ3} to study eigenfunctions for billiards which have rectangular components were applied. Here we take an arbitrary polygonal billiard $B$ and show that eigenfunction mass cannot concentrate away from the vertices; in other words, given any neighbourhood $U$ of the vertices, there is a lower bound $$ int_U |u|^2 geq c int_B |u|^2 $$ for some $c = c(U) > 0$ and any eigenfunction $u$.

تحميل البحث