Tri de la table de faits et compression des index bitmaps avec alignement sur les mots


الملخص بالإنكليزية

Bitmap indexes are frequently used to index multidimensional data. They rely mostly on sequential input/output. Bitmaps can be compressed to reduce input/output costs and minimize CPU usage. The most efficient compression techniques are based on run-length encoding (RLE), such as Word-Aligned Hybrid (WAH) compression. This type of compression accelerates logical operations (AND, OR) over the bitmaps. However, run-length encoding is sensitive to the order of the facts. Thus, we propose to sort the fact tables. We review lexicographic, Gray-code, and block-wise sorting. We found that a lexicographic sort improves compression--sometimes generating indexes twice as small--and make indexes several times faster. While sorting takes time, this is partially offset by the fact that it is faster to index a sorted table. Column order is significant: it is generally preferable to put the columns having more distinct values at the beginning. A block-wise sort is much less efficient than a full sort. Moreover, we found that Gray-code sorting is not better than lexicographic sorting when using word-aligned compression.

تحميل البحث