The low energy spectrum of a particle in planar honeycomb lattices is conical, which leads to the unusual electronic properties of graphene. In this letter we calculate the quasienergy spectra of a charged particle in honeycomb lattices driven by a strong AC field, which is of fundamental importance for its time-dependent dynamics. We find that depending on the amplitude, direction and frequency of external field, many interesting phenomena may occur, including band collapse, renormalization of velocity of ``light, gap opening etc.. Under suitable conditions, with increasing the magnitude of the AC field, a series of phase transitions from gapless phases to gapped phases appear alternatively. At the same time, the Dirac points may disappear or change to a line. We suggest possible realization of the system in Honeycomb optical lattices.