We show that high-dimensional analogues of the sine function (more precisely, the d-dimensional polar sine and the d-th root of the d-dimensional hypersine) satisfy a simplex-type inequality in a real pre-Hilbert space H. Adopting the language of Deza and Rosenberg, we say that these d-dimensional sine functions are d-semimetrics. We also establish geometric identities for both the d-dimensional polar sine and the d-dimensional hypersine. We then show that when d=1 the underlying functional equation of the corresponding identity characterizes a generalized sine function. Finally, we show that the d-dimensional polar sine satisfies a relaxed simplex inequality of two controlling terms with high probability.