Pruning Attribute Values From Data Cubes with Diamond Dicing


الملخص بالإنكليزية

Data stored in a data warehouse are inherently multidimensional, but most data-pruning techniques (such as iceberg and top-k queries) are unidimensional. However, analysts need to issue multidimensional queries. For example, an analyst may need to select not just the most profitable stores or--separately--the most profitable products, but simultaneous sets of stores and products fulfilling some profitability constraints. To fill this need, we propose a new operator, the diamond dice. Because of the interaction between dimensions, the computation of diamonds is challenging. We present the first diamond-dicing experiments on large data sets. Experiments show that we can compute diamond cubes over fact tables containing 100 million facts in less than 35 minutes using a standard PC.

تحميل البحث