Dumb-bell swimmers


الملخص بالإنكليزية

We investigate the way in which oscillating dumb-bells, a simple microscopic model of apolar swimmers, move at low Reynolds number. In accordance with Purcells Scallop Theorem a single dumb-bell cannot swim because its stroke is reciprocal in time. However the motion of two or more dumb-bells, with mutual phase differences, is not time reversal invariant, and hence swimming is possible. We use analytical and numerical solutions of the Stokes equations to calculate the hydrodynamic interaction between two dumb-bell swimmers and to discuss their relative motion. The cooperative effect of interactions between swimmers is explored by considering first regular, and then random arrays of dumb-bells. We find that a square array acts as a micropump. The long time behaviour of suspensions of dumb-bells is investigated and compared to that of model polar swimmers.

تحميل البحث