In recent years there have been a number of proposals to utilize the specificity of DNA based interactions for potential applications in nanoscience. One interesting direction is the self-assembly of micro- and nanoparticle clusters using DNA scaffolds. In this letter we consider a DNA scaffold method to self-assemble clusters of colored particles. Stable clusters of microspheres have recently been produced by an entirely different method. Our DNA based approach self-assembles clusters with additional degrees of freedom associated with particle permutation. We demonstrate that in the non-equilibrium regime of irreversible binding the self-assembly process is experimentally feasible. These color degrees of freedom may allow for more diverse intercluster interactions essential for hierarchical self-assembly of larger structures.