The Alpha Centauri Binary System: Atmospheric Parameters and Element Abundances


الملخص بالإنكليزية

The alpha Centauri binary system, owing to its duplicity, proximity and brightness, and its components likeness to the Sun, is a fundamental calibrating object for the theory of stellar structure and evolution and the determination of stellar atmospheric parameters. This role, however, is hindered by a considerable disagreement in the published analyses of its atmospheric parameters and abundances. We report a new spectroscopic analysis of both components of the alpha Centauri binary system and compare published analyses of the system. The analysis is differential with respect to the Sun, based on high-quality spectra, and employed spectroscopic and photometric methods to obtain as many independent Teff determinations as possible. The atmospheric parameters are also checked for consistency against the results of the dynamical analysis and the positions of the components in a theoretical HR diagram. We discuss possible origins of discrepancies, concluding that the presence of NLTE effects is a probable candidate, but we note that there is as yet no consensus on the existence and cause of an offset between the spectroscopic and photometric Teff scales of cool dwarfs. The spectroscopic surface gravities also agree with those derived from directly measured masses and radii. The abundance pattern can be deemed normal in the context of recent data on metal-rich stars. The position of alpha Cen A in an up-to-date theoretical evolutionary diagrams yields a good match of the evolutionary mass and age with those from the dynamical solution and seismology.

تحميل البحث