The temperature dependent evolution of the renormalization effect in optimally-doped Bi2212 along the nodal direction has been studied via angle-resolved photoemission spectroscopy. Fine structure is observed in the real part of the self-energy (Re$Sigma$), including a subkink and maximum, suggesting that electrons couple to a spectrum of bosonic modes, instead of just one mode. Upon cooling through the superconducting phase transition, the fine structures of the extracted Re$Sigma$ exhibit a two-processes evolution demonstrating an interplay between kink renormalization and superconductivity. We show that this two-process evolution can be qualitatively explained by a simple Holstein model in which a spectrum of bosonic modes is considered.