Quantum computing using shortcuts through higher dimensions


الملخص بالإنكليزية

Quantum computation offers the potential to solve fundamental yet otherwise intractable problems across a range of active fields of research. Recently, universal quantum-logic gate sets - the building blocks for a quantum computer - have been demonstrated in several physical architectures. A serious obstacle to a full-scale implementation is the sheer number of these gates required to implement even small quantum algorithms. Here we present and demonstrate a general technique that harnesses higher dimensions of quantum systems to significantly reduce this number, allowing the construction of key quantum circuits with existing technology. We are thereby able to present the first implementation of two key quantum circuits: the three-qubit Toffoli and the two-qubit controlled-unitary. The gates are realised in a linear optical architecture, which would otherwise be absolutely infeasible with current technology.

تحميل البحث