North Atlantic climate during glacial times was characterized by large-amplitude switchings, the Dansgaard-Oeschger (DO) events, with an apparent tendency to recur preferably in multiples of about 1470 years. Recent work interpreted these intervals as resulting from a subharmonic response of a highly nonlinear system to quasi-periodic solar forcing plus noise. This hypothesis was challenged as inconsistent with the observed variability in the phase relation between proxies of solar activity and Greenland climate. Here we reject the claim of inconsistency by showing that this phase variability is a robust, generic feature of the nonlinear dynamics of DO events, as described by a model. This variability is expected from the fact that the events are threshold crossing events, resulting from a cooperative process between the periodic forcing and the noise. This process produces a fluctuating phase relation with the periodic forcing, consistent with proxies of solar activity and Greenland climate.