Time Structure of Ultra-High Energy Cosmic Ray Sources and Consequences for Multi-messenger Signatures


الملخص بالإنكليزية

The latest results on the sky distribution of ultra-high energy cosmic ray sources have consequences for their nature and time structure. If the sources accelerate predominantly nuclei of atomic number A and charge Z and emit continuously, their luminosity in cosmic rays above ~6x10^{19} eV can be no more than a fraction of ~5x10^{-4} Z^{-2} of their total power output. Such sources could produce a diffuse neutrino flux that gives rise to several events per year in neutrino telescopes of km^3 size. Continuously emitting sources should be easily visible in photons below ~100 GeV, but not in TeV gamma-rays which are likely absorbed within the source. For episodic sources that are beamed by a Lorentz factor Gamma, the bursts or flares have to last at least ~0.1 Gamma^{-4} A^{-4} yr. A considerable fraction of the flare luminosity could go into highest energy cosmic rays, in which case the rate of flares per source has to be less than ~5x10^{-3} Gamma^4 A^4 Z^2 yr^{-1}. Episodic sources should have detectable variability both at GLAST and TeV energies, but neutrino fluxes may be hard to detect.

تحميل البحث