Observations of the Naked-Eye GRB 080319B: Implications of Natures Brightest Explosion


الملخص بالإنكليزية

The first gamma-ray burst (GRB) confirmed to be bright enough to be seen with the naked eye, GRB 080319B at redshift z = 0.937, allowed for exquisite follow-up observations across the electromagnetic spectrum. We present our detailed optical and infrared observations of the afterglow, consisting of over 5000 images starting 51 s after the GRB trigger, in concert with our own analysis of the Swift data. The event is extreme not only in observed properties but intrinsically: it was the most luminous event ever recorded at optical and infrared wavelengths and had an exceedingly high isotropic-equivalent energy release in gamma-rays. At early times, the afterglow evolution is broadly consistent with being reverse-shock dominated, but then is subsumed by a forward shock at around 1000 s. The overall spectral energy distribution, spanning from ultraviolet through near-infrared wavelengths, shows no evidence for a significant amount of dust extinction in the host frame. The afterglow evolution, however, is highly chromatic: starting at about 1000 s the index shifts blueward before shifting back to the red at late times. In our deepest late-time observations, we find tentative evidence for an optical jet break and a luminous supernova. Finally, we examine the detectability of such events with current and future facilities and find that such an event could be detected in gamma-rays by BAT out to z = 10.7 (8 sigma), while the nominal EXIST sensitivity would allow detection to z ~ 32. At K band, this source would have been easily detected with meter-class telescopes to z ~ 17.

تحميل البحث