Since the discovery of the accelerated expansion of the universe, it was necessary to introduce a new component of matter distribution called dark energy. The standard cosmological model considers isotropy of the pressure and assumes an equation of state $p=omega rho$, relating the pressure $p$ and the energy density $rho$. The interval of the parameter $omega$ defines the kind of matter of the universe, related to the fulfillment, or not, of the energy conditions of the fluid. The recent interest in this kind of fluid with anisotropic pressure, in the scenario of the gravitational collapse and star formation, imposes a carefull analysis of the energy conditions and the role of the components of the pressure. Here, in this work, we show an example where the classification of dark energy for isotropic pressure fluids is used incorrectly for anisotropic fluids. The correct classification and its consequences are presented.