The diagnostic age versus mass-to-light ratio diagram is often used in attempts to constrain the shape of the stellar initial mass function (IMF), and the potential longevity of extragalactic young to intermediate-age massive star clusters. Here, we explore its potential for Galactic open clusters. On the basis of a small, homogenised cluster sample we provide useful constraints on the presence of significant binary fractions. Using the massive young Galactic cluster Westerlund 1 as a key example, we caution that stochasticity in the IMF introduces significant additional uncertainties. We conclude that for an open cluster to survive for any significant length of time, and in the absence of substantial external perturbations, it is a necessary but not a sufficient condition to be located close to or (in the presence of a significant binary population) somewhat BELOW the predicted photometric evolutionary sequences for normal simple stellar populations (although such a location may be dominated by a remaining bound cluster core and thus not adequately reflect the overall cluster dynamics).