Molecular Systems with Infinite and Finite Degrees of Freedom. Part I: Multi-Scale Analysis


الملخص بالإنكليزية

The paper analyses stochastic systems describing reacting molecular systems with a combination of two types of state spaces, a finite-dimensional, and an infinite dimenional part. As a typical situation consider the interaction of larger macro-molecules, finite and small in numbers per cell (like protein complexes), with smaller, very abundant molecules, for example metabolites. We study the construction of the continuum approximation of the associated Master Equation (ME) by using the Trotter approximation [27]. The continuum limit shows regimes where the finite degrees of freedom evolve faster than the infinite ones. Then we develop a rigourous asymptotic adiabatic theory upon the condition that the jump process arising from the finite degrees of freedom of the Markov Chain (MC, typically describing conformational changes of the macro-molecules) occurs with large frequency. In a second part of this work, the theory is applied to derive typical enzyme kinetics in an alternative way and interpretation within this framework.

تحميل البحث