Fast kinetic Monte Carlo simulation of strained heteroepitaxy in three dimensions


الملخص بالإنكليزية

Accelerated algorithms for simulating the morphological evolution of strained heteroeptiaxy based on a ball and spring lattice model in three dimensions are explained. We derive exact Greens function formalisms for boundary values in the associated lattice elasticity problems. The computational efficiency is further enhanced by using a superparticle surface coarsening approximation. Atomic hoppings simulating surface diffusion are sampled using a multi-step acceptance-rejection algorithm. It utilizes quick estimates of the atomic elastic energies from extensively tabulated values modulated by the local strain. A parameter controls the compromise between accuracy and efficiency of the acceptance-rejection algorithm.

تحميل البحث