On the divergences of inflationary superhorizon perturbations


الملخص بالإنكليزية

We discuss the infrared divergences that appear to plague cosmological perturbation theory. We show that within the stochastic framework they are regulated by eternal inflation so that the theory predicts finite fluctuations. Using the $Delta N$ formalism to one loop, we demonstrate that the infrared modes can be absorbed into additive constants and the coefficients of the diagrammatic expansion for the connected parts of two and three-point functions of the curvature perturbation. As a result, the use of any infrared cutoff below the scale of eternal inflation is permitted, provided that the background fields are appropriately redefined. The natural choice for the infrared cutoff would of course be the present horizon; other choices manifest themselves in the running of the correlators. We also demonstrate that it is possible to define observables that are renormalization group invariant. As an example, we derive a non-perturbative, infrared finite and renormalization point independent relation between the two-point correlators of the curvature perturbation for the case of the free single field.

تحميل البحث