Nitrogen enrichment, boron depletion and magnetic fields in slowly-rotating B-type dwarfs


الملخص بالإنكليزية

Evolutionary models for massive stars, accounting for rotational mixing effects, do not predict any core-processed material at the surface of B dwarfs with low rotational velocities. Contrary to theoretical expectations, we present a detailed and fully-homogeneous, NLTE abundance analysis of 20 early B-type dwarfs and (sub)giants that reveals the existence of a population of nitrogen-rich and boron-depleted, yet intrinsically slowly-rotating objects. The low-rotation rate of several of these stars is firmly established, either from the occurrence of phase-locked UV wind line-profile variations, which can be ascribed to rotational modulation, or from theoretical modelling in the pulsating variables. The observational data presently available suggest a higher incidence of chemical peculiarities in stars with a (weak) detected magnetic field. This opens the possibility that magnetic phenomena are important in altering the photospheric abundances of early B dwarfs, even for surface field strengths at the one hundred Gauss level. However, further spectropolarimetric observations are needed to assess the validity of this hypothesis.

تحميل البحث