Effective resistance of random trees


الملخص بالإنكليزية

We investigate the effective resistance $R_n$ and conductance $C_n$ between the root and leaves of a binary tree of height $n$. In this electrical network, the resistance of each edge $e$ at distance $d$ from the root is defined by $r_e=2^dX_e$ where the $X_e$ are i.i.d. positive random variables bounded away from zero and infinity. It is shown that $mathbf{E}R_n=nmathbf{E}X_e-(operatorname {mathbf{Var}}(X_e)/mathbf{E}X_e)ln n+O(1)$ and $operatorname {mathbf{Var}}(R_n)=O(1)$. Moreover, we establish sub-Gaussian tail bounds for $R_n$. We also discuss some possible extensions to supercritical Galton--Watson trees.

تحميل البحث