Stellar dynamos are driven by complex couplings between rotation and turbulent convection, which drive global-scale flows and build and rebuild stellar magnetic fields. When stars like our sun are young, they rotate much more rapidly than the current solar rate. Observations generally indicate that more rapid rotation is correlated with stronger magnetic activity and perhaps more effective dynamo action. Here we examine the effects of more rapid rotation on dynamo action in a star like our sun. We find that vigorous dynamo action is realized, with magnetic field generated throughout the bulk of the convection zone. These simulations do not possess a penetrative tachocline of shear where global-scale fields are thought to be organized in our sun, but despite this we find strikingly ordered fields, much like sea-snakes of toroidal field, which are organized on global scales. We believe this to be a novel finding.