With exciton lifetime much extended in semiconductor quantum-well structures, their transport and Bose-Einstein condensation become a focus of research in recent years. We reveal a momentum-space gauge field in the exciton center-of-mass dynamics due to Berry phase effects. We predict spin-dependent topological transport of the excitons analogous to the anomalous Hall and Nernst effects for electrons. We also predict spin-dependent circulation of a trapped exciton gas and instability in an exciton condensate in favor of vortex formation.