We present the Spitzer Infrared Spectrograph (IRS) spectrum of SR20, a 5--10 AU binary T Tauri system in the $rho$ Ophiuchi star forming region. The spectrum has features consistent with the presence of a disk; however, the continuum slope is steeper than the $lambda^{-4/3}$ slope of an infinite geometrically thin, optically thick disk, indicating that the disk is outwardly truncated. Comparison with photometry from the literature shows a large increase in the mid-infrared flux from 1993 to 1996. We model the spectral energy distribution and IRS spectrum with a wall + optically thick irradiated disk, yielding an outer radius of 0.39$_{+0.03}^{-0.01}$ AU, much smaller than predicted by models of binary orbits. Using a two temperature $chi^2$ minimization model to fit the dust composition of the IRS spectrum, we find the disk has experienced significant grain growth: its spectrum is well-fit using opacities of grains larger than 1 $mu$m. We conclude that the system experienced a significant gravitational perturbation in the 1990s.