TOPICAL REVIEW: General relativistic boson stars


الملخص بالإنكليزية

There is accumulating evidence that (fundamental) scalar fields may exist in Nature. The gravitational collapse of such a boson cloud would lead to a boson star (BS) as a new type of a compact object. Similarly as for white dwarfs and neutron stars, there exists a limiting mass, below which a BS is stable against complete gravitational collapse to a black hole. According to the form of the self-interaction of the basic constituents and the spacetime symmetry, we can distinguish mini-, axidilaton, soliton, charged, oscillating and rotating BSs. Their compactness prevents a Newtonian approximation, however, modifications of general relativity, as in the case of Jordan-Brans-Dicke theory as a low energy limit of strings, would provide them with gravitational memory. In general, a BS is a compact, completely regular configuration with structured layers due to the anisotropy of scalar matter, an exponentially decreasing halo, a critical mass inversely proportional to constituent mass, an effective radius, and a large particle number. Due to the Heisenberg principle, there exists a completely stable branch, and as a coherent state, it allows for rotating solutions with quantised angular momentum. In this review, we concentrate on the fascinating possibilities of detecting the various subtypes of (excited) BSs: Possible signals include gravitational redshift and (micro-)lensing, emission of gravitational waves, or, in the case of a giant BS, its dark matter contribution to the rotation curves of galactic halos.

تحميل البحث