New reductions of integrable matrix PDEs: $Sp(m)$-invariant systems


الملخص بالإنكليزية

We propose a new type of reduction for integrable systems of coupled matrix PDEs; this reduction equates one matrix variable with the transposition of another multiplied by an antisymmetric constant matrix. Via this reduction, we obtain a new integrable system of coupled derivative mKdV equations and a new integrable variant of the massive Thirring model, in addition to the already known systems. We also discuss integrable semi-discretizations of the obtained systems and present new soliton solutions to both continuous and semi-discrete systems. As a by-product, a new integrable semi-discretization of the Manakov model (self-focusing vector NLS equation) is obtained.

تحميل البحث