Sideband cooling and coherent dynamics in a microchip multi-segmented ion trap


الملخص بالإنكليزية

Miniaturized ion trap arrays with many trap segments present a promising architecture for scalable quantum information processing. The miniaturization of segmented linear Paul traps allows partitioning the microtrap in different storage and processing zones. The individual position control of many ions - each of them carrying qubit information in its long-lived electronic levels - by the external trap control voltages is important for the implementation of next generation large-scale quantum algorithms. We present a novel scalable microchip multi-segmented ion trap with two different adjacent zones, one for the storage and another dedicated for the processing of quantum information using single ions and linear ion crystals: A pair of radio-frequency driven electrodes and 62 independently controlled DC electrodes allows shuttling of single ions or linear ion crystals with numerically designed axial potentials at axial and radial trap frequencies of a few MHz. We characterize and optimize the microtrap using sideband spectroscopy on the narrow S1/2 <-> D5/2 qubit transition of the 40Ca+ ion, demonstrate coherent single qubit Rabi rotations and optical cooling methods. We determine the heating rate using sideband cooling measurements to the vibrational ground state which is necessary for subsequent two-qubit quantum logic operations. The applicability for scalable quantum information processing is proven.

تحميل البحث