In this work we propose an extension to the analytical one-dimensional model proposed by E. Gnecco (Phys. Rev. Lett. 84:1172) to describe friction. Our model includes normal forces and the dependence with the angular direction of movement in which the object is dragged over a surface. The presence of the normal force in the model allow us to define judiciously the friction coefficient, instead of introducing it as an {sl a posteriori} concept. We compare the analytical results with molecular dynamics simulations. The simulated model corresponds to a tip sliding over a surface. The tip is simulated as a single particle interacting with a surface through a Lennard-Jones $(6-12)$ potential. The surface is considered as consisting of a regular BCC(001) arrangement of particles interacting with each other through a Lennard-Jones $(6-12)$ potential. We investigate the system under several conditions of velocity, temperature and normal forces. Our analytical results are in very good agreement with those obtained by the simulations and with experimental results from E. Riedo (Phys. Rev. Lett. 91:084502) and Eui-Sung Yoon (Wear 259:1424-1431) as well.