Vibrational excitations in systems with correlated disorder


الملخص بالإنكليزية

We investigate a $d$-dimensional model ($d$ = 2,3) for sound waves in a disordered environment, in which the local fluctuations of the elastic modulus are spatially correlated with a certain correlation length. The model is solved analytically by means of a field-theoretical effective-medium theory (self-consistent Born approximation) and numerically on a square lattice. As in the uncorrelated case the theory predicts an enhancement of the density of states over Debyes $omega^{d-1}$ law (``boson peak) as a result of disorder. This anomay becomes reinforced for increasing correlation length $xi$. The theory predicts that $xi$ times the width of the Brillouin line should be a universal function of $xi$ times the wavenumber. Such a scaling is found in the 2d simulation data, so that they can be represented in a universal plot. In the low-wavenumber regime, where the lattice structure is irrelevant there is excellent agreement between the simulation at small disorder. At larger disorder the continuum theory deviates from the lattice simulation data. It is argued that this is due to an instability of the model with stronger disorder.

تحميل البحث