We investigate different opinion formation models on adaptive network topologies. Depending on the dynamical process, rewiring can either (i) lead to the elimination of interactions between agents in different states, and accelerate the convergence to a consensus state or break the network in non-interacting groups or (ii) counter-intuitively, favor the existence of diverse interacting groups for exponentially long times. The mean-field analysis allows to elucidate the mechanisms at play. Strikingly, allowing the interacting agents to bear more than one opinion at the same time drastically changes the models behavior and leads to fast consensus.