GCIRS3 is the most prominent MIR source in the central pc of the Galaxy. NIR spectroscopy failed to solve the enigma of its nature. The properties of extreme individual objects of the central stellar cluster contribute to our knowledge of star and dust formation close to a supermassive black hole. We initiated an interferometric experiment to understand IRS3 and investigate its properties as spectroscopic and interferometric reference star at 10um. VISIR imaging separates a compact source from diffuse, surrounding emission. The VLTI/MIDI instrument was used to measure visibilities at 10mas resolution of that compact 10um source, still unresolved by a single VLT. Photometry data were added to enable simple SED- and full radiative transfer-models of the data. The luminosity and size estimates show that IRS3 is probably a cool carbon star enshrouded by a complex dust distribution. Dust temperatures were derived. The coinciding interpretation of multiple datasets confirm dust emission at several spatial scales. The IF data resolve the innermost area of dust formation. Despite observed deep silicate absorption towards IRS3 we favor a carbon rich chemistry of the circumstellar dust shell. The silicate absorption most probably takes place in the outer diffuse dust, which is mostly ignored by MIDI measurements. This indicates physically and chemically distinct conditions of the local dust, changing with the distance to IRS3. We have demonstrated that optical long baseline interferometry at infrared wavelengths is an indispensable tool to investigate sources at the Galactic Center. Our findings suggest further studies of the composition of interstellar dust and the shape of the 10um silicate feature at this outstanding region.