Dynamic of threshold solutions for energy-critical wave equation


الملخص بالإنكليزية

We consider the energy-critical non-linear focusing wave equation in dimension N=3,4,5. An explicit stationnary solution, $W$, of this equation is known. The energy E(W,0) has been shown by C. Kenig and F. Merle to be a threshold for the dynamical behavior of solutions of the equation. In the present article we study the dynamics at the critical level E(u_0,u_1)=E(W,0) and classify the corresponding solutions. We show in particular the existence of two special solutions, connecting different behaviors for negative and positive times. Our results are analoguous to our previous work on radial Schrodinger equation, but without any radial assumption on the data. We also refine the understanding of the dynamical behavior of the special solutions.

تحميل البحث