We performed an integral field spectroscopic study for the HII galaxy IIZw70 in order to investigate the interplay between its ionized interstellar medium (ISM) and the massive star formation (SF). Observations were taken in the optical spectral range (3700-6800 A) with the Potsdam Multi-Aperture Spectrophotometer (PMAS) attached to the 3.5 m telescope at CAHA. We created and analysed maps of spatially distributed emission-lines, continuum emission and properties of the ionized ISM (e.g. physical-chemical conditions, dust extinction, kinematics). We investigated the relation of these properties to the spatial distribution and evolutionary stage of the massive stars. For the first time we have detected the presence of Wolf-Rayet (WR) stars in this galaxy. The peak of the ionized gas emission coincides with the location of the WR bump. The region of the galaxy with lower dust extinction corresponds to the region that shows the lowest values of velocity dispersion and radial velocity. The overall picture suggests that the ISM of this region is being disrupted via photoionization and stellar winds, leading to a spatial decoupling between gas+stars and dust clouds. The bulk of dust appears to be located at the boundaries of the region occupied by the probable ionizing cluster. We also found that this region is associated to the nebular emission in HeII4686 and to the intensity maximum of most emission lines. This indicates that the hard ionizing radiation responsible for the HeII4686 nebular emission can be related to the youngest stars. Within $sim$ 0.4 x 0.3 kpc^2 in the central burst, we derived O/H using direct determinations of Te[OIII]. We found abundances in the range 12+log(O/H)=7.65-8.05, yielding an error-weighted mean of 12+log(O/H)=7.86 $pm$0.05.