A Method for Weak Lensing Flexion Analysis by the HOLICs Moment Approach


الملخص بالإنكليزية

We have developed a method for measuring higher-order weak lensing distortions of faint background galaxies, namely the weak gravitational flexion, by fully extending the Kaiser, Squires & Broadhurst method to include higher-order lensing image characteristics (HOLICs) introduced by Okura, Umetsu, & Futamase. We take into account explicitly the weight function in calculations of noisy shape moments and the effect of higher-order PSF anisotropy, as well as isotropic PSF smearing. Our HOLICs formalism allows accurate measurements of flexion from practical observational data in the presence of non-circular, anisotropic PSF. We test our method using mock observations of simulated galaxy images and actual, ground-based Subaru observations of the massive galaxy cluster A1689 ($z=0.183$). From the high-precision measurements of spin-1 first flexion, we obtain a high-resolution mass map in the central region of A1689. The reconstructed mass map shows a bimodal feature in the central $4times 4$ region of the cluster. The major, pronounced peak is associated with the brightest cluster galaxy and central cluster members, while the secondary mass peak is associated with a local concentration of bright galaxies. The refined, high-resolution mass map of A1689 demonstrates the power of the generalized weak lensing analysis techniques for quantitative and accurate measurements of the weak gravitational lensing signal.

تحميل البحث