We classify algebraic curvature tensors such that the Ricci operator is simple (i.e. the Ricci operator is complex diagonalizable and either the complex spectrum consists of a single real eigenvalue or the complex spectrum consists of a pair of eigenvalues which are complex conjugates of each other) and which are Jacobi--Ricci commuting (i.e. the Ricci operator commutes with the Jacobi operator of any vector).