Finite-Size Scaling from the non-perturbative Renormalization Group


الملخص بالإنكليزية

The phase diagram of QCD at finite temperature and density and the existence of a critical point are currently very actively researched topics. Although tremendous progress has been made, in the case of two light quark flavors even the order of the phase transition at zero density is still under discussion. Finite-size scaling is a powerful method for the analysis of phase transitions in lattice QCD simulations. From the scaling behavior, critical exponents can be tested and the order as well as the universality class of a phase transition can be established. This requires knowledge of the critical exponents and the scaling behavior. We use a non-perturbative Renormalization Group method to obtain critical exponents and the finite-size scaling functions for the O(4) universality class in three dimensions. These results are useful for a comparison to the actual scaling behavior in lattice QCD simulations with two flavors, as well as for an estimate of the size of the scaling region and the deviations from the expected scaling behavior.

تحميل البحث