Many-body Electronic Structure of Metallic alpha-Uranium


الملخص بالإنكليزية

We present results for the electronic structure of alpha uranium using a recently developed quasiparticle self-consistent GW method (QSGW). This is the first time that the f-orbital electron-electron interactions in an actinide has been treated by a first-principles method beyond the level of the generalized gradient approximation (GGA) to the local density approximation (LDA). We show that the QSGW approximation predicts an f-level shift upwards of about 0.5 eV with respect to the other metallic s-d states and that there is a significant f-band narrowing when compared to LDA band-structure results. Nonetheless, because of the overall low f-electron occupation number in uranium, ground-state properties and the occupied band structure around the Fermi energy is not significantly affected. The correlations predominate in the unoccupied part of the f states. This provides the first formal justification for the success of LDA and GGA calculations in describing the ground-state properties of this material.

تحميل البحث