The interplay of charmonium production and suppression in In+In and Pb+Pb reactions at 158 AGeV and in Au+Au reactions at sqrt(s)=200 GeV is investigated with the HSD transport approach within the `hadronic comover model and the `QGP melting scenario. The results for the J/Psi suppression and the Psi to J/Psi ratio are compared to the recent data of the NA50, NA60, and PHENIX Collaborations. We find that, at 158 AGeV, the comover absorption model performs better than the scenario of abrupt threshold melting. However, neither interaction with hadrons alone nor simple color screening satisfactory describes the data at sqrt(s)=200 GeV. A deconfined phase is clearly reached at RHIC, but a theory having the relevant degrees of freedom in this regime (strongly interacting quarks/gluons) is needed to study its transport properties.