Selective advantage for sexual reproduction with random haploid fusion


الملخص بالإنكليزية

This paper develops a simplified set of models describing asexual and sexual replication in unicel- lular diploid organisms. The models assume organisms whose genomes consist of two chromosomes, where each chromosome is assumed to be functional if it is equal to some master sequence $ sigma_0 $, and non-functional otherwise. The first-order growth rate constant, or fitness, of an organism, is determined by whether it has zero, one, or two functional chromosomes in its genome. For a population replicating asexually, a given cell replicates both of its chromosomes, and splits its genetic material evenly between the two cells. For a population replicating sexually, a given cell first divides into two haploids, which enter a haploid pool, fuse into diploids, and then divide via the normal mitotic process. Haploid fusion is modeled as a second-order rate process. When the cost for sex is small, as measured by the ratio of the characteristic haploid fusion time to the characteristic growth time, we find that sexual replication with random haploid fusion leads to a greater mean fitness for the population than a purely asexual strategy. However, independently of the cost for sex, we find that sexual replication with a selective mating strategy leads to a higher mean fitness than the random mating strategy. This result is based on the assumption that a selective mating strategy does not have any additional time or energy costs over the random mating strategy, an assumption that is discussed in the paper. The results of this paper are consistent with previous studies suggesting that sex is favored at intermediate mutation rates, for slowly replicating organisms, and at high population densities.

تحميل البحث