Spectra of random linear combinations of matrices defined via representations and Coxeter generators of the symmetric group


الملخص بالإنكليزية

We consider the asymptotic behavior as $ntoinfty$ of the spectra of random matrices of the form [frac{1}{sqrt{n-1}}sum_{k=1}^{n-1}Z_{nk}rho_n ((k,k+1)),] where for each $n$ the random variables $Z_{nk}$ are i.i.d. standard Gaussian and the matrices $rho_n((k,k+1))$ are obtained by applying an irreducible unitary representation $rho_n$ of the symmetric group on ${1,2,...,n}$ to the transposition $(k,k+1)$ that interchanges $k$ and $k+1$ [thus, $rho_n((k,k+1))$ is both unitary and self-adjoint, with all eigenvalues either +1 or -1]. Irreducible representations of the symmetric group on ${1,2,...,n}$ are indexed by partitions $lambda_n$ of $n$. A consequence of the results we establish is that if $lambda_{n,1}gelambda_{n,2}ge...ge0$ is the partition of $n$ corresponding to $rho_n$, $mu_{n,1}gemu_{n,2}ge >...ge0$ is the corresponding conjugate partition of $n$ (i.e., the Young diagram of $mu_n$ is the transpose of the Young diagram of $lambda_n$), $lim_{ntoinfty}frac{lambda_{n,i}}{n}=p_i$ for each $ige1$, and $lim_{ntoinfty}frac{mu_{n,j}}{n}=q_j$ for each $jge1$, then the spectral measure of the resulting random matrix converges in distribution to a random probability measure that is Gaussian with random mean $theta Z$ and variance $1-theta^2$, where $theta$ is the constant $sum_ip_i^2-sum_jq_j^2$ and $Z$ is a standard Gaussian random variable.

تحميل البحث