Reversible and coherent storage of light in atomic medium is a key-stone of future quantum information applications. In this work, arbitrary two-dimensional images are slowed and stored in warm atomic vapor for up to 30 $mu$s, utilizing electromagnetically induced transparency. Both the intensity and the phase patterns of the optical field are maintained. The main limitation on the storage resolution and duration is found to be the diffusion of atoms. A techniqueanalogous to phase-shift lithography is employed to diminish the effect of diffusion on the visibility of the reconstructed image.