Muon spin rotation measurements of the superfluid density in fresh and aged superconducting PuCoGa$_5$


الملخص بالإنكليزية

We have measured the temperature dependence and magnitude of the superfluid density $rho_{rm s}(T)$ via the magnetic field penetration depth $lambda(T)$ in PuCoGa$_5$ (nominal critical temperature $T_{c0} = 18.5$ K) using the muon spin rotation technique in order to investigate the symmetry of the order parameter, and to study the effects of aging on the superconducting properties of a radioactive material. The same single crystals were measured after 25 days ($T_c = 18.25$ K) and 400 days ($T_c = 15.0$ K) of aging at room temperature. The temperature dependence of the superfluid density is well described in both materials by a model using d-wave gap symmetry. The magnitude of the muon spin relaxation rate $sigma$ in the aged sample, $sigmapropto 1/lambda^2proptorho_s/m^*$, where $m^*$ is the effective mass, is reduced by about 70% compared to fresh sample. This indicates that the scattering from self-irradiation induced defects is not in the limit of the conventional Abrikosov-Gorkov pair-breaking theory, but rather in the limit of short coherence length (about 2 nm in PuCoGa$_5$) superconductivity.

تحميل البحث