We use femtosecond optical pulses to induce, control and monitor magnetization precession in ferromagnetic Ga0.965Mn0.035As. At temperatures below ~40 K we observe coherent oscillations of the local Mn spins, triggered by an ultrafast photoinduced reorientation of the in-plane easy axis. The amplitude saturation of the oscillations above a certain pump intensity indicates that the easy axis remains unchanged above ~TC/2. We find that the observed magnetization precession damping (Gilbert damping) is strongly dependent on pump laser intensity, but largely independent on ambient temperature. We provide a physical interpretation of the observed light-induced collective Mn-spin relaxation and precession.