Nanocrystals in silicon photonic crystal standing-wave cavities as spin-photon phase gates for quantum information processing


الملخص بالإنكليزية

By virtue of a silicon high-Q photonic crystal nanocavity, we propose and examine theoretically interactions between a stationary electron spin qubit of a semiconductor nanocrystal and a flying photon qubit. Firstly, we introduce, derive and demonstrate for the first time the explicit conditions towards realization of a spin-photon two-qubit phase gate, and propose these interactions as a generalized quantum interface for quantum information processing. Secondly, we examine novel single-spin-induced reflections as direct evidence of intrinsic bare and dressed modes in our coupled nanocrystal-cavity system. The excellent physical integration of this silicon system provides tremendous potential for large-scale quantum information processing.

تحميل البحث