Tight bounds on the concurrence of quantum superpositions


الملخص بالإنكليزية

The entanglement content of superpositions of quantum states is investigated based on a measure called {it concurrence}. Given a bipartite pure state in arbitrary dimension written as the quantum superposition of two other such states, we find simple inequalities relating the concurrence of the state to that of its components. We derive an exact expression for the concurrence when the component states are biorthogonal, and provide elegant upper and lower bounds in all other cases. For quantum bits, our upper bound is tighter than the previously derived bound in [Phys. Rev. Lett. 97, 100502 (2006).]

تحميل البحث