Distribution of the very first PopIII stars and their relation to bright z~6 quasars


الملخص بالإنكليزية

We discuss the link between dark matter halos hosting the first PopIII stars and the rare, massive, halos that are generally considered to host bright quasars at high redshift z~6. The main question that we intend to answer is whether the super-massive black holes powering these QSOs grew out from the seeds planted by the first intermediate massive black holes created in the universe. This question involves a dynamical range of 10^13 in mass and we address it by combining N-body simulations of structure formation to identify the most massive halos at z~6 with a Monte Carlo method based on linear theory to obtain the location and formation times of the first light halos within the whole simulation box. We show that the descendants of the first ~10^6 Msun virialized halos do not, on average, end up in the most massive halos at z~6, but rather live in a large variety of environments. The oldest PopIII progenitors of the most massive halos at z~6, form instead from density peaks that are on average one and a half standard deviations more common than the first PopIII star formed in the volume occupied by one bright high-z QSO. The intermediate mass black hole seeds planted by the very first PopIII stars at z>40 can easily grow to masses m_BH>10^9.5 Msun by z=6 assuming Eddington accretion with radiative efficiency epsilon~0.1. Quenching of the black hole accretion is therefore crucial to avoid an overabundance of supermassive black holes at lower redshift. This can be obtained if the mass accretion is limited to a fraction eta~6*10^{-3} of the total baryon mass of the halo hosting the black hole. The resulting high end slope of the black hole mass function at z=6 is alpha ~ -3.7, a value within the 1sigma error bar for the bright end slope of the observed quasar luminosity function at z=6.

تحميل البحث